The esterase activity of bovine carbonic anhydrase B above pH 9. Reversible and cooalent inhibition by acetozolamide.

نویسندگان

  • J W Wells
  • S I Kandel
  • M Kandel
  • A G Gornall
چکیده

The reversible complex between the metalloenzyme bovine carbonic anhydrase B and the sulfonamide inhibitor acetazolamide can be "frozen" irreversibly by the addition of a covalent bond between the methyl group of the inhibitor and the tau-nitrogen of histidine-64. In both cases the inhibited enzyme is inactive as an esterase toward p-nitrophenyl propionate at physiological pH but retains activity controlled by an ionization in the protein exhibiting a pK-a greater than 10. Similarly, both the covalently and reversibly inhibited enzymes in which the catalytically essential Zn(II) ion has been replaced with Co(II) display the same visible absorption spectrum which is invariant over the pH range from 5 to 12. The evidence therefore indicates that the position of the acetazolamide moiety in the active site is independent of both pH and the presence of the covalent bond to histidine-64. Moreover, when reversibly bound, this inhibitor has been shown to replace the water molecule (or hydroxide ion) known to occupy the fourth coordination position of the metal ion and frequently implicated in the catalytic mechanism of carbonic anhydrases. Thus, the activity exhibited by the inhibited enzymes and consequently the second rise observed in the pH rate profile of the native enzyme above pH 0 cannot reflect the ionization of such a water molecule in contrast to what has been postulated previously (Pocker, Y., and Storm, D. R. (1968) Biochemistry 7, 1202-1214). Displacement of the zinc-bound solvent molecule rather than the alkylation of histidine-64 is suggested, however, as the cause of the inactivation of the alkylated enzyme round neutrality. Taken together, the biphasic pH rate profile of native bovine carbonic anhydrase B as well as the activity retained by the alkylated enzyme above pH 9 are best described by a model in which two groups in the enzyme ionize independently, thereby raising the possibility that the high pH activity is controlled by an ionization outside the active site region of the enzyme. Above pH 9.5 the pK; for the reversible interaction between native carbonic anhydrase and acetazolamide falls off linearly with increasing pH. The slope of --1.56 suggests that, among other factors, more than one ionization is responsible for the descending limb of the pH-i-pH profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants

The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...

متن کامل

Inhibition of rabbit muscle creatine kinase by iodomethane [proceedings].

carbonic anhydrase III with an estimated purity of greater than 95%, as judged by electrophoresis in sodium dodecyl sulphate/polyacrylamide gels. Ion-exchange chromatography and salt fractionation were used to purify the bovine carbonic anhydrase 111. Bovine muscle was homogenized and adjusted t o 40% saturation with (NH4)*S04. The supernatant was applied t o a DEAE-cellulose column (2.5cm x 25...

متن کامل

Monocarboxamidomethyl carbonic anhydrase purified by affinity chromatography.

A monocarboxamidomethyi derivative of human erythrocyte carbonic anhydrase B was purified by affinity chromatography. The modified enzyme possesses 3% of the COshydrating activity and 30% of the esterase activity of the native enzyme. The esterase activity is inhibited by the usual carbonic anhydrase inhibitors although the K; values are, in general, higher than for native enzyme. The pH depend...

متن کامل

Purification and characterization of carbonic anhydrase from bovine erythrocyte plasma membrane.

Carbonic anhydrase (CA) was purified from bovine erythrocyte plasma membrane and characterized in this study. For this purpose, the blood taken from young animals was hemolysed, the membrane fraction was separated, and this fraction was repeatedly washed. The enzyme (CA) was removed from the membrane with buffered TritonX-100 (1%); it could be purified at a factor of 22.8 by affinity chromatogr...

متن کامل

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 9  شماره 

صفحات  -

تاریخ انتشار 1975